Clinical Activity and Tolerability of BLU-667, a Highly Potent and Selective RET Inhibitor, in Patients with Advanced RET-Fusion+ Non-small Cell Lung Cancer

Justin F. Gainor¹, Dae Ho Lee², Giuseppe Curigliano³, Robert C. Doebele⁴, Dong-Wan Kim⁵, Christina S. Baik⁶, Daniel Shao-Weng Tan⁷, Gilberto Lopes⁸, Shirish M. Gadgeel⁹, Philippe Alexandre Cassier¹⁰, Matthew H. Taylor¹¹, Stephen V. Liu¹², Benjamin Besse¹³, Michael Thomas¹⁴, Viola Weijia Zhu¹⁵, Hui Zhang¹⁶, Corinne Clifford¹⁶, Michael R. Palmer¹⁶, Christopher D. Turner¹⁶, Vivek Subbiah¹⁷

¹Massachusetts General Hospital, Boston, MA; ²University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea, Republic of (South); ³University of Milano, European Institute of Oncology, Division of Early Drug Development, Milan, Italy; ⁴University of Colorado Cancer Center, Aurora, CO; ⁵Seoul National University Hospital, Seoul, Korea, Republic of (South); ⁶Fred Hutchinson Cancer Research Center, Seattle, WA; ⁷National Cancer Center, Singapore, Singapore; ⁸Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL; ⁹University of Michigan/Rogel Cancer Center, Ann Arbor, MI; ¹⁰Centre Léon-Bérard, Lyon, France; ¹¹Oregon Health & Science University, Portland, OR; ¹²Georgetown University Medical Center, Washington, DC; ¹³Paris-Sud University, Orsay and Gustave Roussy, Villejuif, France; ¹⁴Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany; ¹⁵Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Orange, CA; ¹⁶Blueprint Medicines Inc, Cambridge, MA; ¹⁷The University of Texas MD Anderson Cancer Center, Houston, TX

#ASCO19 Slides are the property of the author permission required for reuse.

PRESENTED BY: Justin F. Gainor

PRESENTATION DATE: June 3, 2019

Disclosures

Justin F. Gainor, MD

- Honoraria: Pfizer, Novartis, Theravance, Merck, Incyte, Roche
- Consulting or advisory role: Bristol-Myers Squibb, Ariad/Takeda, Genentech/Roche, Loxo, Blueprint Medicines, Amgen, Agios, Regeneron, Oncorus
- Research funding: Novartis, Genentech, Takeda
- Institutional Research funding: Tesaro, Moderna, Blueprint Medicines, Bristol-Myers Squibb, Jounce, Array Biopharma, Adaptimmune, Novartis, Alexo, Merck
- Travel: Novartis, Pfizer, Takeda, Genentech/Roche
- Employment: Ironwood Pharmaceuticals (Spouse)

\$ASCO19

BLU-667 is an investigational agent discovered by and currently in development by Blueprint Medicines **Corporation (Blueprint Medicines)**

RET Alterations: Diverse Oncogenic Drivers Lacking Targeted Therapeutic Approach

Non-small cell lung cancer: ~1-2% RET fusions^{1,2}

Advanced medullary thyroid cancer: ~90% RET mutations³

Papillary thyroid cancer: ~20% RET fusions⁴

Multiple other tumor types including esophageal, breast, melanoma, colorectal, and leukemia: <1% RET-altered^{5,6}

NSCLC patients with RET fusions have not significantly benefited from existing therapy

- Chemotherapy: nonspecific, low response rates, significant toxicity
- Checkpoint inhibition: Preliminary evidence for lack of benefit in RET-altered NSCLC⁷
- Multikinase inhibitors: ↓ activity, ↑ off-target toxicity^{8,9}

No selective RET inhibitors are approved

#ASCO19 Slides are the property of the author, permission required for reuse. NSCLC, non-small cell lung cancer; ORR, overall response rate; PFS, progression-free survival. 1. Lipson, et al. *Nat Med* 2012; 2. Takeuchi, et al. *Nat Med* 2012; 3. Romei, et al. *Oncotarget* 2018; 4. Santoro, et al. *J Clin Invest* 1992; 5. Kato, et al. *Clin Cancer Res* 2017; 6. Ballerini, et al. *Leukemia* 2012; 7. Mazieres, et al. *JCO* 2018; 8. Drillon, et al. *Lancet* 2017; 9. Yoh, et al. *Lancet Respir Med* 2017

BLU-667 Potently and Selectively Inhibits RET Alterations and Resistance Mutants

Cabozantinib-resistant KIF5B-RET **BLU-667: High kinome** KIF5B-RET(V804L) selectivity for RET^a 3000-2000 2500 olume(mm³) lumor Volume(mm³) 1500 2000 1500 1000 Tumor 1000 500 500 10 12 Days after start of treatment Days after start of treatment Vehicle QD In vivo models of implanted, - Cabozantinib 60 mg/kg QD engineered Ba/F3 cells¹

BLU-667 Cellular activity in KIF5B-RET²

	KIF5B-RET	KIF5B-RET V804L	KIF5B-RET V804M	KIF5B-RET V804E
BLU-667	10.1 nM	8.1 nM	14.1 nM	8.1 nM
	(1x)	(0.8x)	(1.4x)	(0.8x)

BLU-667 vs. pharmacologically relevant kinases:

- ~90-fold more selective for RET than VEGFR2
- 20-fold more selective for RET than JAK1

PRESENTED AT: 2019 ASCO ANNUAL MEETING

#ASCO19 Slides are the property of the author, permission required for reuse.

Justin F. Gainor

PRESENTED BY:

^aKinome illustration reproduced courtesy of Cell Signaling Technology, Inc. (www.cellsignal.com) (CSTI). The foregoing website is maintained by CSTI, and Blueprint Medicines is not responsible for its content. BLU-667 is an investigational agent discovered and currently in development by Blueprint Medicines Corporation (Blueprint Medicines). 1. Subbiah, et al. *Cancer Discovery* 2018; 2. Blueprint internal data

4

ARROW: BLU-667 Dose-Escalation and Expansion Study

Part 1: Dose-Escalation (N=62; Complete)¹

RET-altered advanced solid tumors

BLU-667: 30-600 mg by daily oral administration (QD or BID)

> Phase 2 dose determined (400 mg QD)

ARROW is registered with clinicaltrials.gov (NCT03037385)

Part 2: Expansion Cohorts (Ongoing)

BLU-667 400 mg QD

- Unresectable, advanced solid tumor
- RET alteration status by local tumor testing
- No additional driver mutation
- ECOG PS 0-1
- Asymptomatic brain metastases allowed
- Progressive disease or intolerant to SOC therapy, or not a candidate

Primary objectives:

Overall response rate (RECIST 1.1) Safety **RET fusion+ NSCLC,** prior platinum (n=80)

RET fusion+ NSCLC, platinum naïve (n=40)

MTC, prior cabozantinib or vandetanib (n=60)

MTC, no prior cabozantinib or vandetanib (n=40)

Other RET fusion+ tumors (n=40)

Other RET-mutated tumors (n=20)

RET-altered, prior selective RET inhibitor (n=20)

#ASCO19 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Justin F. Gainor

BID, twice daily dosing; ECOG PS, Eastern Cooperative Oncology Group performance status; MTC, medullary thyroid cancer; QD, once daily dosing; RECIST, response evaluation criteria in solid tumors; SOC, standard of care. 1. Subbiah, et al. *Cancer Res* 2018.

Baseline Characteristics RET Fusion+ Advanced NSCLC Patients

	RET-Fusion+ Advanced NSCLC 400 mg QD Starting Dose		
Characteristic	All (N=120)	Prior Platinum (N=91)	
Age (years), median (range)	60 (28-87)	60 (28-85)	
Male, n (%)	59 (49)	45 (49)	
ECOG PS, n (%)			
0	46 (38)	33 (36)	
1-2	74 (62)	58 (64)	
Brain metastases, n (%)	48 (40)	36 (40)	
Prior systemic regimens, median (range)	2 (0-11)	2 (1-11)	
Any prior anticancer treatment	101 (84)	91 (100)	
Chemotherapy, n (%)	92 (77)	91(100)	
PD-1 or PD-L1 inhibitor, n (%)	47 (39)	41 (45)	
Chemotherapy + PD-(L)1 combination, n (%)	41 (34)	41 (45)	
Multikinase inhibitor, n (%)	21 (18)	20 (22)	
Smoking history ^a			
Current/Prior	41 (34)	33 (36)	
Never	78 (65)	57 (63)	
Histology			
Adenocarcinoma	114 (95)	87 (96)	
Other	6 (5)	4 (4)	

#ASCO19 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Justin F. Gainor ECOG PS, Eastern Cooperative Oncology Group Performance Status. ^aSmoking history is unknown for one patient. ^bIncludes RET fusion+ by fluorescence *in situ* hybridization (FISH); RET fusion partner to be determined via central analysis. Data cut-off date: 28 Apr 2019. 6

BLU-667 is Well Tolerated by Patients with RET Fusion+ Advanced NSCLC

	RET Fusion+ Advanced NSCLC 400 mg QD Starting Dose (N=120)				
	Treatment-Emergent (≥15% overall)		Treatment-Related		
Adverse Events	All	Grade ≥3	All	Grade ≥3	
Constipation	30%	2%	17%	2%	
Neutropenia ^a	26%	13%	26%	13%	
AST increased	24%	5%	20%	2%	
Fatigue	21%	3%	13%	3%	
Hypertension	20%	13%	13%	10%	
Anemia	18%	7%	11%	4%	
Diarrhea	18%	2%	9%	-	
Pyrexia	18%	-	2%	-	
ALT increased	17%	3%	13%	2%	
Cough	17%	-	3%	-	
Dry mouth	17%	-	12%	-	

Additional grade ≥3 treatment related AEs (≥2%): increased CPK (3%), leukopenia^b (3%).

Among 120 pts with advanced NSCLC receiving BLU-667 starting dose of 400 mg QD:

- Treatment-related toxicity is generally low-grade and reversible
- 7% discontinued BLU-667 due to treatment-related toxicity*
 - Pneumonitis, respiratory distress/ hypoxemia, mucositis/colitis, myelosuppression, gait disturbance, anemia

* Across the entire study (n=276), rate of discontinuation due to treatment-related toxicity is 4%.

#ASCO19 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Justin F. Gainor ^aCombined term including decreased neutrophils and neutropenia. ^bCombined term including leukopenia and white blood cell count decreased. AE, adverse event; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CPK, creatine phosphokinase. Data cut-off date: 28 Apr 2019.

BLU-667 Demonstrates Substantial Antitumor Activity in RET Fusion+ Advanced NSCLC

#ASCO19 Slides are the property of the author, permission required for reuse.

PRESENTED BY:

Justin F. Gainor

CI, confidence interval; CR, complete response; DCR, disease control rate (best response of SD or better); ORR, overall response rate; PD, progressive disease; PR, partial response; SD, stable disease. Patients enrolled by 14 Nov 18, data cut-off 28 Apr 19. Response-evaluable population includes patients with measurable disease at baseline and \geq 1 evaluable post-treatment disease assessment, and excludes 4 patients who previously received >1 cycle of a selective RET inhibitor.

BLU-667 Induces Rapid and Durable Responses in RET Fusion+ Advanced NSCLC

Duration of Treatment and Response: BLU-667 Starting Dose 400 mg QD

BLU-667 is Active Regardless of Prior Checkpoint Treatment

#ASCO19 Slides are the property of the author, permission required for reuse.

BLU-667 is Active Across RET Fusion Genotypes

BLU-667 Starting Dose 400 mg QD

#ASCO19 Slides are the property of the author, permission required for reuse.

BLU-667 is Active Regardless of CNS Involvement

BLU-667 Starting Dose 400 mg QD

#ASCO19 Slides are the property of the author. permission required for reuse

PRESENTED BY: Justin F. Gainor

CNS, central nervous system Patients enrolled by 14 Nov 18, data cut-off 28 Apr 19.

BLU-667 is Active Against Intracranial Metastases

- 7 of 9 (78%) patients had shrinkage of measurable brain metastases
- No patients at 400 mg QD starting dose had progression due to new CNS involvement

PRESENTED AT:

PRESENTED BY: Justin F. Gainor ^aData shown for 9 patients with brain lesion(s) identified as RECIST 1.1 target lesions at baseline. Data cut-off date: 28 Apr 2019.

BLU-667 is Active Against Intracranial Metastases

Baseline

Cycle 3, Day 1

- 52-year-old woman, RET fusion+ NSCLC, prior platinum and checkpoint inhibitor
- Near-complete resolution of previously untreated target brain metastasis after two months of BLU-667 400 mg QD
- Continues to receive treatment with ongoing confirmed PR (70% shrinkage) at ~6 months

Images courtesy of Dr. Stephen Liu, Georgetown University, Washington, D.C.

- 59-year-old man, RET fusion+ NSCLC, prior platinum and checkpoint inhibitor
- Complete resolution of previously untreated nontarget brain metastasis after two months of BLU-667 400 mg QD
- Continues to receive treatment with ongoing confirmed PR (67% shrinkage) at ~6 months

#ASCO19 Slides are the property of the author permission required for reuse.

Rapid and Robust Clearance of RET Variant ctDNA with BLU-667

RET Fusion+ Advanced NSCLC, BLU-667 starting dose 400 mg QD

Best response PD SD

PR

Among patients receiving a BLU-667 starting dose of 400 mg QD:

- 18/20 (90%) with detectable RET fusion ctDNA at baseline had complete clearance within the first cycle
- Clearance of genomic driver variants ctDNA has been associated with improved cancer outcomes^{1–3}

#ASCO19 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Justin F. Gainor ctDNA: circulating tumor DNA. Data cut-off date: 28 Apr 2019. 1. Cabel, et al. *Ann Oncol* 2017; 2. Mok, et al. *Clin Cancer Res* 2015; 3. Drilon, et al. *Nat Rev Clin Oncol* 2018; Awad, et al. *J Thorac O*ncol 2018.

BLU-667 has Activity in Other RET Fusion+ Malignancies

- PR in 2/2 patients with metastatic pancreatic cancer
 - 67 yo male, CCDC6-RET fusion, continues with confirmed PR (53% shrinkage) at ~6 months
 - 31 yo male, TRIM33-RET and JMJD1C-RET fusions, continues treatment after PR (41% shrinkage) at first response assessment
- PR in a patient with intrahepatic bile duct carcinoma
 - 51 yo female, NCOA4-RET fusion, continues with confirmed PR (67% shrinkage) at ~15 months
- ORR 83% (5/6)* in RET-fusion PTC (Abstract 6018 presented June 1, 2019)
- Safety profile similar to what was seen in RET fusion+ NSCLC

#ASCO19 Slides are the property of the author permission required for reuse.

Conclusions

- BLU-667 demonstrates broad and durable antitumor activity in patients with RET fusion+ advanced NSCLC
 - 60% ORR and 100% DCR in patients previously treated with platinum chemotherapy, and 58% ORR in all RET fusion+ patients
 - Responses observed regardless of treatment history, RET fusion partner or CNS involvement
 - Active against intracranial metastases
 - Well tolerated at 400 mg QD with most AEs grade 1/2
- BLU-667 has FDA breakthrough therapy designation in RET fusion+ NSCLC that progressed following platinum based chemotherapy
- Data support expansion of ARROW trial in treatment-naïve NSCLC patients and continued enrollment of other RET-altered solid tumor groups

#ASCO19 Slides are the property of the author permission required for reuse.

Acknowledgments

• Participating patients and families

• BLU-667-1101 Investigators and research coordinators

- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Oregon Health & Science University, Portland, OR, United States
- Massachusetts General Hospital Cancer Center, Boston, MA, United States
- University of Pennsylvania, Philadelphia, PA, United States
- University of California Irvine Medical Center, Irvine, CA, United States
- University of Miami, Miami, FL, United States
- Georgetown University Medical Center, Washington, District of Columbia, United States
- University of Washington, Seattle, WA, United States
- University of Michigan, Ann Arbor, MI, United States
- Cornell University, New York, NY, United States
- University of Colorado, Aurora, CO, United States
- Washington University School of Medicine, St. Louis, MO, United States
- Mayo Clinic, Rochester, MN, United States
- Mayo Clinic, Jacksonville, FL, United States
- Mayo Clinic, Phoenix, AZ, United States
- Texas Oncology, Dallas, TX, United States
- Thoraxklinik Heidelberg, Heidelberg, Germany
- Universitatsklinikum Essen, Essen, Germany
- Pius-Hospital Oldenberg, Oldenberg, Germany
- Vall d'Hebron University Hospital, Barcelona, Spain
- Hospital Universitario 12 de Octubre, Madrid, Spain

- Hospital Universitario Ramon y Cajal, Madrid, Spain
- Hospital Clinic Barcelona, Barcelona, Spain
- Hospital Duran I Reynals, Barcelona, Spain
- Centre Leon Berard, Lyon, France
- Gustave Roussy, Villejuif, France
- Institut Claudius Regaud, Toulouse, France
- CHU de Rennes, Rennes, France
- CHRU de Lille, Lille, France
- Institut Bergonie, Bordeaux, France
- University College of London NHS Foundation Trust, London, UK
- Guy's Hospital St. Thomas NHS Foundation Trust, London, UK
- The Christie NHS Foundation Trust, Manchester, UK
- University of Milano, Istituto Europeo di Oncologia, Milan, Italy
- Grande Ospedale Metropolitano Niguarda, Milan, Italy
- University Medical Center Gronigen, Gronigen, Netherlands
- National Cancer Centre Singapore, Singapore, Singapore
- Seoul National University Hospital, Seoul, Republic of Korea
- Asan Medical Center, Seoul, Republic of Korea
- Severance Hospital, Seoul, Republic of Korea
- National Taiwan University Hospital, Taipei, Taiwan

Colleagues at Blueprint Medicines Corporation

PRESENTED AT: 2019 ASCO ANNUAL MEETING

#ASCO19 Slides are the property of the author, permission required for reuse.